Construction of near-infrared photonic crystal glucose-sensing materials for ratiometric sensing of glucose in tears.
نویسندگان
چکیده
Noninvasive monitoring of glucose in tears is highly desirable in tight glucose control. The polymerized crystalline colloidal array (PCCA) that can be incorporated into contact lens represents one of the most promising materials for noninvasive monitoring of glucose in tears. However, low sensitivity and slow time response of the PCCA reported in previous arts has limited its clinical utility. This paper presents a new PCCA, denoted as NIR-PCCA, comprising a CCA of glucose-responsive sub-micrometered poly(styrene-co-acrylamide-co-3-acrylamidophenylboronic acid) microgels embedded within a slightly positive charged hydrogel matrix of poly(acrylamide-co-2-(dimethylamino)ethyl acrylate). This newly designed NIR-PCCA can reflect near-infrared (NIR) light, whose intensity (at 1722 nm) would decrease evidently with increasing glucose concentration over the physiologically relevant range in tears. The lowest glucose concentration reliably detectable was as low as ca. 6.1 μg/dL. The characteristic response time τ(sensing) was 22.1±0.2s when adding glucose to 7.5 mg/dL, and the higher the glucose concentration is, the faster the time response. Such a rationally designed NIR-PCCA is well suited for ratiometric NIR sensing of tear glucose under physiological conditions, thereby likely to bring this promising glucose-sensing material to the forefront of analytical devices for diabetes.
منابع مشابه
Noninvasive photonic-crystal material for sensing glucose in tears.
Most noninvasive (NI) methods for the determination of glucose either detect a small specific glucose signal or measure the effect of glucose on a tissue optical property (1, 2). A recent review identified the three main issues in NI glucose measurements as specificity, compartmentalization of glucose values, and calibration (1 ). This editorial discusses a photonic crystal method (3 ), with re...
متن کاملExtended Near-Infrared Optoacoustic Spectrometry for Sensing Physiological Concentrations of Glucose
Glucose sensing is pursued extensively in biomedical research and clinical practice for assessment of the carbohydrate and fat metabolism as well as in the context of an array of disorders, including diabetes, morbid obesity, and cancer. Currently used methods for real-time glucose measurements are invasive and require access to body fluids, with novel tools and methods for non-invasive sensing...
متن کاملFast responsive crystalline colloidal array photonic crystal glucose sensors.
We developed new photonic crystal polymerized crystalline colloidal array (PCCA) glucose sensing materials, which operate on the basis of formation of cross-links in the hydrogel. These materials are composed of hydrogels that embed an array of approximately 100-nm-diameter monodisperse polystyrene colloids that Bragg diffract light in the visible spectral region. The hydrogels change volume as...
متن کاملTwo-curve-shaped biosensor using photonic crystal nano-ring resonators
We design a novel nano-ring resonator using two-dimensional photonic crystal (2D-PhC), for bio-sensing applications. The structure of biosensor is created by two-curve-shaped ring resonator which sandwiched by two waveguides. These are configured by removing one row of air holes. The refractive index of sensing hole is changed by binding an analyte. Hence, intensity of the transmission spectrum...
متن کاملDesign and Simulation of a New Highly Sensitive Gas Sensor Based on Negative Refraction Photonic Crystal
In this paper, design and simulation of a new highly sensitive gas sensor based on a hybrid photonic crystal (PC) structure, containing negative and positive refractive index sections, is presented. It has been shown that using a PC with negative refraction in the first section, the transmitted power is concentrated on the entrance of the sensing channel, and the transmission of the proposed se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biosensors & bioelectronics
دوره 48 شماره
صفحات -
تاریخ انتشار 2013